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A self-sorting in-place prime factor FFT algorithm introduced in an earlier paper was based 
on a set of modules for performing small discrete Fourier transforms (DFTs) with an optional 
“rotation” of the results. The modules were designed to reduce the total number of additions 
in the FFT algorithm. In specializing this algorithm to the case of real or conjugate-symmetric 
input data. it was found necessary to redesign these modules to impose a particular structure. 
In some cases, the new modules proved to require fewer operations than the old. We describe 
the design procedure and compare the new operation counts with those for Winograd’s DFT 
modules. The algorithms for the new modules are given in detail; these will be useful in coding 
FFT algorithms of either the “prime factor” or conventional variety. ;a I988 Academic PESS, IX. 

1. INTRODUCTION 

In a previous paper [7], the author described a self-sorting, in-place complex 
FFT (fast Fourier transform) algorithm based on the decomposition of N (the 
length of the transform) into mutually prime factors. This algorithm was developed 
from those of Burrus and Eschenbacher [l] and Rothweiler [2], but departed from 
theirs in two important respects: the indexing scheme was quite -different (and 
considerably simpler), and the algorithm was designed to reduce the number of 
a~!ditions rather than the number of multiplications. The implementation of this 
algorithm on the Cray-1 was described in [S], where it was shown to be up to 32% 
faster than the conventional FFT. 

At the heart of this algorithm is a set of “rotated” small-n DFT (discrete Fourier 
transform) modules, each of which performs a transform 

I, - 1 
.xj = c zkdnkr (OGjdn- I), 

k=O 

where 

o,~ = exp(2rc@) 
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and I’ is any integer mutually prime to IZ. The set of permissible values of n was 
{2, 3, 4, 5, 7, 8, 9, 161, as in most published “prime factor” FFT algorithms. T’hese 
DFT modules differ from those of Winograd [lo] in explicitly allowing for the 
possibility of rotation (1. # 1 j and in minimizing the number of additions (at the 
expense of extra multiplications, which are, however, “free” in the context of 
implementation on machines such as the Cray-1 [6] j. 

Most applications of the FFT in computational fluid dynamics actually require 
transforms between the real data in physical space and the half-complex (coujugate- 
symmetric) data in transform space. The self-sorting, in-place prime factor complex 
FFT described in [7] has now been specialized to the case of real/half-complex 
transforms; an account of this new algorithm is given in [9]. In the course of this 
work, it was found necessary to redesign the set of rotated DFT modules of [7] in 
order to give them a particular structure. Specifically, Eq. (I! may be rewritten in 
matrix/vector form as 

where W,5’1 is the matrix with element (j, k) given by w!, (rows and columns of 
matrices are indexed here from 0 to n - 1). The required structure corresponds to a 
decomposition of the form 

where the elements of P’Lrl are all pure real numbers, and X,, is defined as follows: if 
x = X, y, then 

-y,,;z = J’n ‘2 (if n is even); 

xi = yj + iyn j (1 <j<n/oj 

x ,zm-j= J’j-iy, -j ( 1 d j < lz/2 ). 

Since Vk’l is a real matrix, any multiplications by imaginary quantities during 
the rotated DFT algorithm are delayed until the final stage, corresponding to the 
multiplication by the matrix X,,. 

Wow, the rotated DFT modules described in [7] for 17 = 2, 3-4, 5, and 7 were 
already in the required form, but those for ~1 = 8, 9, 16 were not. A systematic 
procedure (outlined in Section 2) was developed for constructing modules with the 
required structure, and the full set of modules is given in Section 3. As noted later, 
the new modules were improvements on those given in C715 requiring the same 
number of additions but fewer logical operations (IZ = 8, 16) or fewer multiplications 
(n = 7, 9 ). 

While the specific structure of Eq. (2) was necessary for specializing the prime 
factor FFT algorithm to the case of real/half-complex transforms, the new set cf 
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modules will be useful not only for coding prime factor FFT algorithms, but also 
(with I’ = 1, i.e., no rotation) for coding conventional mixed-radix FFT 
algorithms [4]. 

2. REDESIGN OF DFT MODULES 

Any complex transform defined by Eq. (1) can be computed by separately trans- 
forming the real and imaginary parts of the input data and then combining the 
results. We will show here that this procedure is the key to obtaining an algorithm 
with the required structure. 

Suppose that in Eq. (1) we split the input data into its real and imaginary com- 
ponents: thus zk = uk + ibk, where elk and 6, are both real. Now if we calculate 
separately 

II- 1 n-l 

gj = C akcoikr, h.i = 1 bkoik’, Odjbn-1, (3) 
k=O k=O 

then the sequences (gj,, t / 1 ‘II.} will each be conjugate-symmetric; for example, 

12 - I n-1 

gnmmj= C ~~wj;-ilk,-= C ak(&$-r)* 

k=O k=O 

since w,” = 1, w --jkr = (wjk’)*, and the ak’s are real. Let us define n real quantities p, 
as follows: for 0 <j < n/2, pj is the real part of gj; while for 1 < j < n/2, p,, mmi is the 
imaginary part of g,. Thus 

po=go; (4) 

Pn,O = gni2 if II is even; (5) 

Pj=~(gj+gi*)? l< j<n/2; (6) 

pn -j = -+i( gj - gi*)> 16 j<n/2. (7) 

SimiIarly, define n real quantities qj in terms of the h,‘s. Finally, set 

-r,=po+iq,; 

-~nlZ = h2 + iq,,, if n is even; 

~j=(pj+iqj)+i(p,_j+iq,~_j) for 1 d j<n/Z, 

X, ~ j = ( pj + iqj) - i( p,l -j + iq,, -j) for 1 Q j<n/2. 

(81 

(9) 

(10) 

(11) 
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i , .d 

It is easily verified from (4))( 7) and (8)-( 11) that 

x; = gj + ih, (Jj 

for 0 <j< II - 1. and substituting (3) into (12) we see that we have computed the 
transform defined in Eq. (1). 

Since the transforms defined by Eq. (3) are real to halfcomplex, and the results 
of each transform have been interpreted as n real numbers, they can be written as 

p = T ‘:‘]a, q = Pyb. 

where the elements of P’Lrl are all real. Thus 

p + iq = VLrl(a + ibj = ti;ilrkt. 

Finally, Eqs. (~8 ))( 1 I ) correspond to 

(13) 

x = x,(p + iq j. (14) 

Combining (13) and (14) shows that we have constructed a decomposition of the 
form (2). 

However. we still need a representation of the matrix L.n ‘i’3 in efficient algorithmic 
form. This may be obtained as follows. Algorithms for multiplication by II$‘l were 
defined in [7], but did not necessarily have the required structure. If we apply such 
an algorithm to real input data we find that about half the computations are redun- 
dant, as in [S]. Pruning the redundant operations and arranging the results in the 
required order yields an algorithm for multiplication by vLrl. 

The rotated DFT modules constructed using this procedure for yi = 8, 9. 16 
turned out to be improvements on those given in [7]. For n = 8, 16 it became 
evident that the number of multiplications by ‘i 1 (treated as logical operations cm 
sign bits) could be reduced, while the rearrangement for n = 9 revealed that four of 
the original 40 multiplications could be saved by combining them with other 
multiplications. In each case the number of additions remained the same as in [‘7]~ 

Since the time that the new modules were used in the real/half-complex transform 
package described in [9], further reductions have been noted in the numbers of 
multiplications required. In the 12 = 7 module, a simple way of saving 4 of the 
original 36 real multiplications occurred to the author while this paper was beimg 
written. Very recently, Suzuki et al. [3] have presented a new radix-3 algorithm 
which, for or= 9, requires 32 real multiplications. Generalizing their algorithm to 
include rotations and then subjecting it to the design procedure described above 
showed that 4 of these multiplications could be saved. 

The final total of operation counts for each rotated DFT module is shown in 
Table I, and compared with the corresponding operation counts for the 
Winograd [lo] DFT modules. The logical operations in the modules for 
tz = 4, 8, 16 are only required for rotations and would not be needed if the modules 
were used as part of a “conventional” mixed-radix transform algorithm. For 
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TABLE I 

Real Operation Counts for Small-n DFT Modules 

w 

Minimum-add Winograd 

Adds Mults Logical Adds Mults 

4 0 0 4 0 
12 4 12 4 
16 0 2 16 0 
32 12 34 10 
60 32 - 72 16 
52 4 4 52 4 
80 28 - 88 20 

144 24 6 148 20 

n = 2, 3,4, 8 the addition and multiplication counts for the “minimum-add” 
modules are the same as for the Winograd modules; for n = 5, 7, 9, 16 some 
additions are saved at the cost of extra multiplications. It is interesting that the 
minimum-add and Winograd (minimum-multiply) modules now require the same 
total number of arithmetic operations, except for n = 7. 

A different set of algorithms may be obtained by noting that since the matrix 
IV’;‘] is symmetric, Eq. (2 j can be transposed into the form 

(15) 

where U,5’1 is just the transpose of I’~‘], and again has all its elements real. This 
alternative form was also found useful in developing a real/half-complex version of 
the self-sorting, in-place prime factor FFT algorithm [9]. The procedure for con- 
structing an algorithm for multiplication by U,5’1 involves applying the original 
algorithm of [7] to conjugate-symmetric input data and pruning the redundant 
operations. In all cases it was found that the operation counts for the algorithm 
defined by (15) were the same as those for the algorithm defined by (2). 

3. THE NEW SET OF MODULES 

Since the construction of the rotated minimum-add DFT modules is a nontrivial 
task, this section is devoted to a complete specification of the set of algorithms 
having the structure defined by Eq. (2) and incorporating the latest improvements. 

Each of the modules in the set computes 

,t- I 
xi = c zlp;kr (O<j,<n- l), 

k=O 
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where CD,, = exp(Zni/n), ‘yi and zk are complex, and r is an integer mutually prime to 
II. The algorithms are defined in terms of complex numbers; but all multiplications 
are by real constants, except for multiplications by i in the final stage. 

For purposes of comparison, the modules are given below in a style similar to 
that usually adopted for the Winograd modules [lo]. To verify that they are 
mathematically correct, Fortran versions of all the algorithms have been used and 
tested in an extended version of the self-sorting in-place prime factor complex FET 
routine given in the Appendix of [7]. 

(a) n=2 (r= 1): q)=z,+,,; xr=ro-;I. 
(b) n=3 (r= 1,2): 8=2rr/3: c,=sin(rO). 

f,=z,+z’; J’” = z* + r , ; yL=;O-+[i; j:2 = C,(.zl -zZ’); 

X0= )‘o; x1 = ?‘I + iy2; x,=y,-iy2. 

(c) n=4 (r= 1,3): 8=x/2; c,=sin(rO)= 21. 

jd) n=5 (r=l,2,3,4): 

e = 27q5; c, = +[cos(re) - cos(2r6)] = kJ5i.4; 

cl = sin(r0); c3 = sin( 2rQ) 

t,=z,+zl; t,=z,+r,, t,=z,- 24; t&=:,--J; 

t, = 1, + fz; t, = c,(t, - fz); f,=Zo-$ ’ .l 51 

3’0 = 30 + I, ; )‘I = t, + t,; JJz = t7 - t, ; 

?‘3=C3t?-c~t4; 1’4=c2t,+c3t4; 

1,) = J’I-J ; x1 = 1’1+ i)“$; xz=yr+iy,; x_1 = J’l - iy3 ; x4 = \‘I - iv,, 

(e) n = 7 (r = 1, 2, 3, 4, 5, 6): 

e = 2x17; Cl = cos(d); cz = cos(2rB); cj = c0s(3re); 

cq = sin(&); cg = sin(2rO); c6 = sin(3r0); 

t,=z1+z6; r1=z2+zj; t,=z,+3,; 

t,=z,-z’; fs=zz--‘.i; t6=3q-zJ; 

t, = zo - it,; t,=t,-t-’ 3, t, = Iz - t,; 

l’o=z,+t,+t?-kf3; J’I=t,+c,i,+C7tg; 
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4’2 = t, + c2 t, + c3 t,; J’3 = t, + c3 I, + c, t9 ; 

)‘4=Cgt4-Cqt5+Cjt6; 4’5=Cst4-Cgtj-Cqt6; 

J’fj=C3t‘j+CjtS+Cfjt6; 

X0= f’o; x, = 4’1 + iJ’6; x2 = J’2 + iJ’5 ; x3=y1+iy,; 

x4 = J’3 - iJ14 ; x j = J’2 - iJ’5 ; x6 = y, - iy6. 

I? = 8 (1. = 1, 3, 5, 7): 6 = 7q4; c, = sin(2rB) = _+I; 

c2 = cos(r0) = *1/$; c,=c,cz; 

t,=zg+z4, t2=ZO-Z . 
4, tj=z-,+zs; t,=z,-z=,; 

tj=z2+zg; t, = cl(zz -qJ; t,=z,+z,; ts=zj-z7, 

t, = t, + t,; t,, = I, + t,; t,, =c,(t,-t*); t12 = c,(t, + ts); 

J-0 = t, + t,,; 2’1=f2+fll; )‘2=t,-15; ?‘3=tz-l,,, 

J’4=f9--flo; )‘5 = t,, - t,; ‘6 = c,(b - t7); y7= t,, + I,; 

x0 = J’o; x, = ?‘I + $7; .x2=y2+iy,; s3=4(3+@5; 

x4= ?)4; 
. 

X5 = I’3 - l!‘j r x6=y2-iy6; x,=y,-iy7. 

(g) n = 9 (Y = 1, 2,4, 5, 7, 8): 0 = 2~~19; c, = sin(3rO); 

CT = cos(r8); c3 = sin(d); c4 = cos( 2rO); c5 = sin(2r0); 

c,=c,c,, c,=c,c3; c,=c,c,; C9=C,Cj, 

t,=z,+;,; t,=z,-it,; t, = c,(z3 - 16); I, = zo + t, ; 

t, = z‘, + z,; I,=:1 -9 2 5; t,=z,-z,; tg=z, + t5; 

t,=z2 +‘7j; t,() = 28 - jt9; t,1 =z2- Zj; t,,=z,+t,, 

I,, = ts + t,,; t,, = 16 + t,,; t,j=t(j-t10; t,, = t7 + t,,; 

I,, = t7 - flli t,8 = c2t,4 -c,t,7; t,,=c,t,,+c,tl,; 

t~O=~3tlj+c6t16; t2, =C5t,5-CSf16; tzz = t,s -t t,,; 

t,, = t20 - 121; 

yo = t4 + t,,: )‘I = tz + t1g; ?‘2 = t2 + t,,; y3=t,-it,,; 

4'4 = 12 - t22 ; yj = I, - t23; J’6 = c,tt, - tlz); 

J’7 = t2, - t3 ; yz = t, + t,,; 

x0= 4’0; XI = 4’1 + iyg; x2=y2+i?(,; x3 = J’3 + iy6 ; X4 = J’4 + iJ’5 

Xj = J’4 - iJJ5; x,=y,-iy,; x7 = J’ 2 - iy7; X8 = 4’1 - iy*. 
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